<< Главная страница

Митохондрии и пластиды.

Существует гипотеза о том, что в известной степени автономные и несущие определенное количество собственной ДНК митохондрии и пластиды представляют собой видоизмененные прокариотические организмы, которые нашли "убежище" в более крупных гетеротрофных клетках-хозяевах - предшественниках эукариот. Все, или почти все, ныне живущие эукариоты содержат в своих клетках митохондрии, а все автотрофные эукариоты - также и пластиды. Возможно, они были приобретены в результате независимых случаев симбиоза, точнее - внутреннего симбиоза (эндосимбиоза). Более крупные гетеротрофные клетки, предшественницы эукариотических клеток, очевидно, защищали свои симбиотические органоиды от различных неблагоприятных условий окружающей среды. В свою очередь, прокариотические симбионты оказались полезными благодаря способности использовать энергию солнечного света (фотосинтез) и возможности использовать молекулярный кислород для окисления органических веществ. В результате эукариоты смогли заселить сушу, а также ту часть водной среды (обычно с высокой рН), где прокариоты относительно немногочисленны.

Митохондрии - неотъемлемая часть всех живых эукариотических клеток. Форма, величина и их число постоянно меняются. Число митохондрий варьирует от нескольких десятков до сотен. Особенно их много в секреторных тканях растений. Размеры этих органоидов не превышают 1 мкм. По форме они чаще всего эллиптические или округлые. Снаружи митохондрии окружены оболочкой, состоящей из двух мембран, которые не связаны с эндоплазматической сетью цитоплазмы (рис. 9). Внутренняя мембрана образует выросты в полость митохондрии в виде пластин или трубок, называемых кристами. Кристы бывают различных типов. Пространство между кристами заполнено однородным прозрачным веществом - матриксом митохондрий. В матриксе встречаются рибосомы, подобные по величине рибосомам прокариотических клеток, и собственная митохондриальная ДНК, заметная под электронным микроскопом в виде тонких нитей.

Рис. 9 Строение митохондрий: А - объемное изображение, Б - срез: 1 - наружная мембрана, 2 - внутренняя мембрана, 3 - криста, 4 - метрике митохондрии, 5 - митохондриальные рибосомы (отличающиеся от цитоплазматических рибосом), 6 - нить митохондриальной ДНК
Рис. 9 Строение митохондрий: А - объемное изображение, Б - срез: 1 - наружная мембрана, 2 - внутренняя мембрана, 3 - криста, 4 - метрике митохондрии, 5 - митохондриальные рибосомы (отличающиеся от цитоплазматических рибосом), 6 - нить митохондриальной ДНК

34

Митохондрии способны к независимому от ядра синтезу своих белков на собственных рибосомах под контролем митохондриальиой ДНК. Митохондрии образуются только путем деления.

Основная функция митохондрий состоит в обеспечении энергетических потребностей клетки путем дыхания. Богатые энергией молекулы АТФ синтезируются при реакции окислительного фосфорилирования. Энергия, запасаемая АТФ, получается в результате окисления в митохондриях различных энергетически богатых веществ, главным образом Сахаров. Механизм окислительного фосфорилирования путем хемиосмотического сопряжения открыт в 1960 г. английским биохимиком П. Митчеллом.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются так называемые пропластиды, мелкие обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов. Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами. Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды. В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид: хлоропласт (зеленого цвета), хромопласты (желтого, оранжевого или красного цвета) и лейкопласты (бесцветные). Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласта - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами. Лейкопласты и хромопласты могут иметь различную форму.

Хлоропласта встречаются во всех зеленых органах растений, лейкопласты весьма обычны в клетках органов, скрытых от солнечного света, - корнях, корневищах, клубнях, а также в ситовидных элементах некоторых покрытосеменных. Хромопласты содержатся в клетках лепестков многих растений, зрелых окрашенных плодах (томаты, шиповник, рябина), иногда - в корнеплодах (морковь). Строение пластид может быть рассмотрено на примере хлоропластов (рис. 10). Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдается в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму. Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, отграничивающих особые плоские мешки, называемые тилакоидами или ламеллами. Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными. Эти тилакоиды образуют стопки (наподобие стопки · монет), или граны. Тилакоиды стромы объединяют граны между собой. В мембранах тилакоидов сосредоточен главнейший пигмент зеленых растений - хлорофилл и вспомогательные пигменты - каротиноиды. Внутренняя структура хромопластов и лейкопластов проще. Граны в них отсутствуют.

35

Рис. 10 Схема строения хлоропласта в объемном изображении (А) и на срезе (Б): 1 - наружная мембрана, 2 - внутренняя мембрана, 3 - строма, 4 - грана, 5 - тилакоид граны, 6 - тилакоид стромы, 7 - нить пластидной ДНК, 8 - рибосомы хлоропласта (отличающиеся от цитоплазматических рибосом), 9 - гранулы крахмала
Рис. 10 Схема строения хлоропласта в объемном изображении (А) и на срезе (Б): 1 - наружная мембрана, 2 - внутренняя мембрана, 3 - строма, 4 - грана, 5 - тилакоид граны, 6 - тилакоид стромы, 7 - нить пластидной ДНК, 8 - рибосомы хлоропласта (отличающиеся от цитоплазматических рибосом), 9 - гранулы крахмала

В строме хлоропластов содержатся ферменты и рибосомы, отличающиеся от рибосом цитоплазмы меньшими размерами. Часто имеются один или несколько небольших зерен первичного ассимиляционного крахмала. Генетический аппарат хлоропластов автономен, они содержат свою собственную ДНК.

Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу, точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах, темновые - в строме хлоропласта. И хлоропласты, и митохондрии способны синтезировать собственные белковые молекулы, так как обладают собственной ДНК.

Помимо фотосинтеза, в хлоропластах осуществляется синтез АТФ и АДФ (фосфорилирование), синтез и гидролиз липидов, ассимиляционного крахмала и белков, откладывающихся в строме.

В лейкопластах пигменты отсутствуют, но здесь может осуществляться синтез и накопление запасных питательных веществ, в первую очередь крахмала, иногда белков, редко жиров. Очень часто в лейкопластах формируются зерна вторичного запасного крахмала.

Красноватая или оранжевая окраска хромопластов связана с присутствием в них каротиноидов. Считается, что хромопласты - конечный этап в развитии пластид, иначе говоря, это стареющие хлоропласты и лейкопласты. Наличие хромопластов отчасти определяет яркую окраску многих цветков, плодов и осенних листьев.

36


На главную
Комментарии
Войти
Регистрация
Status: 408 Request Timeout